Hoop Screens: Why is a basketball model also best for predicting the box office?

By Ari Levin

Advisor Gaston Illanes

Northwestern University Mathematical Methods in the Social Sciences

Senior Thesis Spring 2019
Table of Contents

Acknowledgements .. 3
Introduction ... 3
Literature Review .. 4
Data .. 8
Industry Background .. 8
 Jurassic World: Fallen Kingdom: Profile of a Blockbuster ... 9
 Limited releases .. 18
 Miscellaneous .. 21
Methods ... 22
Results .. 26
Discussion .. 29
Conclusion ... 36
References ... 38
Appendices .. 40
 Appendix A: Variables ... 40
 Appendix B: Data Eliminated ... 42
 Appendix C: Interactions Tested ... 43
 Appendix D: .Do File .. 44
 Appendix E: CARMELO Example from FiveThirtyEight ... 46
Acknowledgements

This project would not have been possible without the help and support of so many people, some of whom I will undoubtedly miss in this paragraph. First, I must thank Gaston Illanes, who was the perfect choice as a thesis advisor. Prof. Illanes was always willing to help, and he knew exactly what I wanted to do and what models I should run. I would also like to thank Professor Joseph Ferrie for organizing the thesis seminar. Thanks to Nicole Schneider, MMSS Program Coordinator, for her administrative support and for keeping the MMSS Lounge open for an unreasonable number of hours, and to Prof. Jeff Ely for leading the MMSS program for my four years. Thanks so much to all the professors in both MMSS and in other departments who taught me all the skills I used in this analysis. I would like to specifically acknowledge John Meehan and Pete Johnson for their help in collecting and organizing the data I needed. Thanks to all of my friends who helped with this study with their input, support, advice and ideas. Finally, this would not have been possible without the unwavering love and support from my amazing family.

Introduction

In this paper, we build a predictive model for estimating the domestic opening weekend box office of wide release movies. The study analyzes which type of model works best, how accurate such a model can predict, and how it compares to industry professionals. Many different models were built and tested in this study. Of these, the most effective is an adaptation of FiveThirtyEight’s CARMELO model of predicting basketball players. That model generates a prediction by taking a weighted average of the most similar movies/players in the data set.
The prediction model is tested on every movie released nationwide in 2018. We then analyze places where the model was accurate and places where it missed to learn about how such a model can be useful and why it may struggle. The CARMELO model generated an R^2 of 0.80 between the predicted and actual opening weekend gross of 2018 films. However, the predictions by forecasting website BoxOffice Pro generated an R^2 of 0.97 for 2018 films, outperforming any model tested. One struggle for the model is predicting “first-of-its-kind” movies that do not have good priors for comparisons. It also struggles to predict movies with a high potential variance and cannot predict which movies reach the high end of their range. The model does not consider data such as ticket presales that are not publicly available but are used by industry experts. The model does, however, succeed in creating an accurate list of similar movies in most instances.

To test different models, this study breaks down the prediction model into three parts: defining closest comparisons, finding the right number of comparisons, and using those comparisons to make a prediction. The best combination of those three factors constitutes the best model.

Literature Review

Box office analysis, predicting or studying the gross of films during their theater release, can lead to novel studies because a large amount of data exists relative to the analysis that has been conducted. Box Office Mojo publishes the daily domestic gross for every film and has an archive dating back through 2002 for single days and through 1982 for weekends, along with characteristics for each film. Every film has unique characteristics, both quantitative and qualitative, that can be used in modeling. The box office landscape changes quickly over time,
due to inflation and changes in consumption patterns, so it is important to continually update old studies and to weigh recent data heavily.

Previous studies have attempted to see whether a model could predict box office performance. Some of those studies focus on a specific model, and do not attempt to find the best one. Others determine which factors are important to box office.

Basuroy, Chatterjee and Ravid (2003) ask, “How critical are critical reviews?” To answer, they take a random sample of 175 films released between 1991-93, 10 years before the study was published, and use the reviews of popular movie critics Gene Siskel and Roger Ebert. They expect to see a negativity bias, where bad reviews hurt more than good ones help, and find this to be true. They also find that the impact of negative reviews diminishes over time, but the impact of positive reviews does not, suggesting “momentum” generated through positive reviews as an important factor. They also note that big budgets and A-list actors blunt the impact of bad reviews.

Their study is important but limited. With social media playing such an important role in the modern film industry, celebrity film critics like Ebert and Siskel are not as important. Furthermore, as to which the study briefly points, the set of movies that Ebert and Siskel review may not be a complete set and may expose the study to selection biases.

Liu (2006) analyzed the impact of word of mouth (WOM) on box office revenue. The study used Yahoo Movies message boards to analyze the valence (whether the tone is positive and negative) and volume of a movie’s online discussion. The broader purpose is to use box office as a proxy to analyze the performance of a new product. Liu finds that WOM has an impact on gross and that volume is more important than valence.
However, this study has some issues that could hurt its accuracy or relevance. Most importantly, the study limits WOM analysis to internet discussion on a specific site. This likely presents a biased sample of the movie consumer base, especially considering that internet use in the United States in 2002 was just 59% of the population, compared to 75% in 2017 (World Bank). The study only considers movies released in Summer 2002, which introduces several potential biases. There is a selection bias, as studios decide which movies to release in summer or other seasons, and anticipated reception might be a factor. There is a small data size, with only 40 movies studied. Given that, the introduction of a single outlier could change the study. Spider-Man was released in May 2002 and was the highest opening weekend in history until July 2006, the type of outlier that could hurt the study.

Additionally, the study presents volume and valence as separate categories, but it is possible or perhaps likely that they interact. Finally, this study is from 2006, and uses 2002 as the data set. The industry has seen so many changes since then that the study may not apply today when making a prediction. The box office industry has seen a massive shift towards an emphasis on opening weekend (with a steep decline afterwards), and social media is now the primary carrier of WOM and likely features a different demographic than early movie forums.

Similar to Liu’s study, Du, Xu and Huang (2014) use social media and microblogs to predict box office in China. They again try to calculate valence for microblogs on the Chinese website Tencent Microblog. They find a strong relationship, more predictive than a linear model. The study is limited to predicting the third week gross after two weeks of gross are already observed. They do not predict opening weekend.

Again, there is an issue of selection bias related to the demographics of an internet message board. Both of these studies could have used a user-aggregated review website, such as IMDB or
Rotten Tomatoes, as a proxy for WOM instead of worrying about defining valence on message boards, a difficult task.

Sawhney and Eliashberg (1996) presents a parsimonious forecasting model. The stated intention is to help theater managers choose which movies to screen. The model, even with its simplicity, is fairly accurate. It determines what type of model to use to predict future weeks. However, it relies largely on prior data points to predict the total gross, rather than predicting week-by-week, which may be more helpful to a theater manager. The opening weekend predictions (t=0) has an average error of 71.1%.

This model is promising but dated. The study includes 111 movies from 1992. The biggest opening weekend from that year (Batman Returns) even adjusted for inflation was just 27.8% of Avengers: Endgame in 2019.

A consistent drawback with the existing literature is that the box office landscape changes so rapidly that analysis from more than 10 years ago may no longer be relevant. For example, Liu uses Yahoo Movies forums, which has long since disappeared. Liu also concludes that word-of-mouth valence declines post-release; this may no longer be true with internet message boards replaced by social media. Just as one example of the fast changes, (see Description for more) before 2009, the highest opening weekend in April was $42,220,847. In April 2019, Avengers: Endgame grossed $357,115,007 opening weekend. Furthermore, many of the studies use small sample sizes.

Most importantly, none of the studies directly predict opening weekend gross. This study will use opening weekend box office as a way to test model accuracy compared to human performance. Instead of limiting to a specific type of model, this study analyzes several possibilities and compares their performance.
Data

The data set contained, at the start, the top 200 movies by total domestic box office for every year from 2006-2018 for 2,600 movies. The data set used data from Box Office Mojo, which is owned by IMDB and contains box office data and some descriptive variables for every major release. More descriptive variables were scraped from the OMDB API. Films were connected by title and release date to the API, and when the title did not match, the IMDB link was inputted by hand. Variables used in the regression were release date, theater count, runtime, genre, studio, rating, reviews, and indicators for whether the movie was a rerelease or a sequel (Appendix A). Every limited release was cut out of the data set. Only movies that played in at least 1,000 theaters for their opening weekend were used for the analysis. There were 1,695 films that fit these criteria. For the sake of conformity in the dataset, a few odd movies were eliminated from the analysis (Appendix B). That left 1,686 movies for the analysis, each with 20 different variables or observations and 42 different regressors (year was not used as a regressor.)

Industry Background

The 2018 domestic box office total ran over $11.8 billion, a new record for a single year. (Unless otherwise specified, all data is from Box Office Mojo.) The box office business is as booming as ever. As for specific movies, Black Panther and Avengers: Infinity War rank third and fourth on the all-time box office list as of April 2019. But 2018 also had its share of box office busts, including Solo: A Star Wars Story and Nutcracker and the Four Realms.
The analysis both in this section and the rest of the paper will be limited to domestic performance instead of worldwide gross. The data is much more robust, and there is a strong correlation from domestic to worldwide box office.

Jurassic World: Fallen Kingdom: Profile of a Blockbuster

A specific example will help illustrate how most movies perform at the box office.

Jurassic World: Fallen Kingdom was one of the biggest movies of 2018. It made a total of $417 million domestically, good for fourth that year, and $1.3 billion worldwide, third for the year.

It was a sequel to the incredibly successful Jurassic World, a reboot of the famous Jurassic Park franchise. Overall, Jurassic World: Fallen Kingdom was the fifth Jurassic World installment. Three of the movies in the series broke records. So, it was likely an easy decision to make another one. In fact, Jurassic World 3 is already in the works.

Release Date

Jurassic World: Fallen Kingdom was released on June 22, 2018 in the United States. This is 10 days later on the calendar than Jurassic World released. The date was announced by Universal Studios executives during the second weekend of its predecessor, and never moved in the three-year span, even though it is not uncommon for films to change their release date.

June is the second-most common month (Figure 1) for a release with an opening weekend over $100 million, behind May. The phrase “summer blockbuster” rings true in the box office industry. A June release capitalizes on families on vacation, kids out of school and warm weather to maximize gross, especially early in the run.
Jurassic World: Fallen Kingdom was released on the fourth Friday in June. Almost every movie is released on a Friday, or a Wednesday of a holiday weekend. Of the movies in the data set, 87% had a Friday release date, and 9% on Wednesday.

Jurassic World in 2015 was released on June 12. That release date put Father’s Day on the second weekend of its release. All holidays affect the box office in ways that depend on the importance of the holiday. Father’s Day gives a boost to movies like Jurassic World that appeal to an older male demographic. On that Sunday, Jurassic World grossed 21% more than would have been expected given the Saturday-to-Sunday drop percentage from the following weekend.
Jurassic World: Fallen Kingdom, however, released the week after Father’s Day. The likely reason for that is the previous week was already taken, by Incredibles 2, which was, as expected, another of the biggest grossers in history ($182 million opening weekend ranks #9 through April 2019.) Universal could release their movie the same weekend if they chose. But every studio likes to avoid competition when possible. However, Jurassic World: Fallen Kingdom’s opening still had competition from the second weekend of Incredibles 2, which grossed $80.3 million.

Figure 2: Average opening weekend gross of wide releases by month of release, 2006-2018. Early summer movies tend to gross more than the rest of the year. Early winter and late summer are the least active periods.
Opening Weekend

For the week of June 22-28, Jurassic World: Fallen Kingdom played in 4,475 theaters, at the time the second-highest number. The widest releases in terms of theater count are all summer movies because some theaters close in the winter. Traditional theater contracts are two weeks (though some are three or even four) for a new release, meaning that the theater can’t drop the movie after the first week. However, 10 theaters added Jurassic World: Fallen Kingdom for the second weekend, giving it 4,485.

The movie made $148,024,610 in its opening weekend, which charts as the 22nd-highest recorded through April 2019. However, that is over $60 million less, and 29% below 2015’s Jurassic World. That performance disappointed, but did not surprise studio executives and industry analysts, such as Box Office Pro, who predicted an opening weekend of $129 million.

The decline was largely consistent throughout the weekend. The Friday total was 28.5% less than Jurassic World’s, 28.6% on Saturday, and 30.5% on Sunday; it is unclear why the Sunday was smaller for the second weekend. One idea is that the first weekend featured more sellouts early in the weekend, pushing people who had planned to go Friday or Saturday to Sunday instead.
The Weekdays

The majority of the box office is collected on the weekends, but the week days make up a significant portion. That percentage varies by genre (Figure 4) and by season. Family movies outside of the summer see a smaller proportion during the week, because the audience is usually in school. Jurassic World: Fallen Kingdom grossed $204,787,335 its first week, 28% coming Monday-Thursday.
Jurassic World: Fallen Kingdom decreased by 63% on its first Monday from the day before but increased by 25% on Tuesday. Tuesday is the busiest of the week days and is a discount day at many theater chains.

Jurassic World: Fallen Kingdom’s second Wednesday was July 4. Independence Day appears to boost box office totals when it falls during the week but hurts them when it’s during a weekend.

Because of the dominant nature of the weekend in the box office, our analysis will focus exclusively on weekends, unless noted otherwise. The weekday gross can be predicted quite easily from the weekend that precedes it.
Week 2

Jurassic World: Fallen Kingdom declined by 58.8% on its second weekend. There’s a very slight inverse relationship between opening weekend and second weekend drop ($R^2=0.0043$, $p = 0.0064$), but there’s many other factors. Notably, Jurassic World dropped just 49%; some of that can be attributed to Father’s Day.

The week-to-week declines were 70.3% for Friday, 52.1% for Saturday, and 50.4% for Sunday. Friday is almost always the highest for the second weekend unless some other factor is involved (usually a holiday).

For many movies, Friday is the biggest day of the opening week, because it is opening day, but for every subsequent week, Saturday is the highest. That was true for Jurassic World: Fallen Kingdom for every week of its release except over Labor Day (see: Last Weeks) when Sunday was 3.1% higher than Saturday.
Figure 5: Average percentage drop from prior weekend, by week of release and genre, for movies released in and currently playing in 1,000+ theaters that did not increase theater count. Bubble sizes is number of movies, color is genre. Most movies decline between 30% and 60% each weekend.

Next weeks

Sometimes, week three represents a big drop off because of the way theater contracts are structured, as discussed earlier. With Jurassic World: Fallen Kingdom’s nine-figure opening weekend, though, there was no worry about that. The film lost just 136 theaters from the preceding week, playing in 4,349 theaters, the most of any film that week.

In week three, Jurassic World: Fallen Kingdom grossed $28.6 million. The 53% decline was a smaller drop than the previous week. That weekend, Jurassic World: Fallen Kingdom ranked
second at the box office, behind the new release of Ant-Man and the Wasp, and barely ahead of Incredibles 2. The next week, it fell behind Incredibles 2 and two new releases for fifth place.

Over the new few weeks, Jurassic World: Fallen Kingdom’s drop began to stabilize, at 43.4%, 30.5%, 40.3% and 41.2% as it crossed $400 million total, just the 33rd movie to do so.

For a big movie like Jurassic World: Fallen Kingdom, in the middle weeks the decline can become stable and predictable through the week. For instance, the week of July 16-22, Monday-Sunday, the drops looked like this: 30.6%, 39.3%, 38.0%, 35.1%, 34.2%, 30.9%, 26.4%. In this time, the Monday-Thursday numbers are both representative of the prior weekend and possess predictive value for the next week.

Later weeks

There is a strong relationship between the opening weekend and the number of weeks for which a film is viable. While a big opening weekend usually leads to a big week two drop, the drops will decline to an extent as the film keeps popularity and stays nationwide in theaters, often playing for months. Jurassic World: Fallen Kingdom made over $1 million, played in over 800 theaters, and ranked in the top 15 for each of its first nine weekends.

In week 11, Labor Day weekend, the film increased from 608 to 1,556 theaters and doubled its gross to $1.5 million. Labor Day is a popular time for studios to give a last-ditch effort to promote their summer hits. That same weekend, Incredibles 2 bumped from 1,060 to 2,890 theaters. The previous year, Pixar’s Cars 3 increased from 214 to 2,445 theaters over Labor Day and increased its gross tenfold while pushing across $150 million total.
The end

Different studios have different practices on how to report gross in later weeks. The movie will generally end up in “dollar theaters” for some time. In later weeks, a movie can be making money in theaters, but the gross is not reported because it is not significant enough to matter. Jurassic World: Fallen Kingdom reported a total of 15 weeks, ending on October 4. The last reported weekend was $114,505 in 162 theaters. The last day, a Thursday, it reported $9,380. That same weekend, though, Deadpool 2, a May release from 20th Century Fox, reported a gross of $2,438 in five theaters, illustrating the difference in reporting strategies. Unlike Universal, Fox reported weekends and weekly gross for the last few weeks but did not report daily grosses beginning on September 20.

In total, Jurassic World: Fallen Kingdom grossed $417,719,760 domestically, and $1,309,484,461 worldwide on a $170 million budget. Not as much as its predecessor, which made over $1.6 billion, but more than enough to turn a profit.

Universal plans to release Jurassic World 3 on June 11, 2021

Limited releases

Not all movies follow the same pattern of Jurassic World: Fallen Kingdom. The complement to the wide release is the **limited (or platform) release**. A limited release starts its run in, depending on the definition, usually less than 1,000 theaters nationwide, generally in select markets. Some start in as few as four theaters limited to New York and Los Angeles. A limited release might be advertised as “in select theaters.”

After its opening weekend, the film is played in more theaters the following week. Depending on its success, it can keep expanding until it is eventually widened nationwide. Roughly one-fourth of the movies in this data set are limited releases (Figure 6).

For any study of limited release films, the selection bias will be extreme:

- While the list of Top 200 movies from each year contains nearly every wide release, success or fail, it contains a very small number of limited releases.
- The film often premieres at a film festival before a distributor buys it, meaning that a study of distributors or studios will confound with the film’s perceived quality and viability.
• The more successful the first weeks, the more theaters a film will open to in later in
weeks, confounding the early and late success of the film.

• Limited releases usually play early in small markets, or markets targeted to the film,
confounding regional and nationwide appeal.

• Any list of top grossing movies will only select the limited release films that succeed the
most.

Limited release films have, on average, different characteristics from wide releases. They are
more likely to be dramas or documentaries and are more often targeted towards urban markets
and to an older population. And they almost always have a smaller budget. They are also more
likely to be better reviewed than wide releases.

Limited release is a popular strategy for films hoping to win awards. Of the nine Academy
Award for Best Picture nominees from 2017, seven began as a limited release, while all reached
at least 900 theaters at one point in their run.

Especially those who are seeking Oscars, limited releases are more common during the fall or
early winter, with the idea that they will be fresh in academy members’ minds. All seven of those
limited release nominees began their run in November or December. (This analysis does not
consider whether that strategy is effective for winning Oscars or getting bigger gross.) However,
there are limited releases year-round.

There are also certain studios that specialize in limited releases, including Focus Features, Fox
Searchlight, and more recently A24. Those studios are sometimes consistent with themselves on
their release patterns and know how to best execute their strategy.
An extreme example of the limited release strategy is the 2016 Oscar-winning La La Land, which grossed a total of $151,101,803 to be the No. 19 film of the year. La La Land began its run in just five theaters, where it grossed $881,104. The $176,221 per-theater average from that weekend ranks No. 10 all time. The top seven on that list all belong to Disney movies that had a very limited release before going nationwide the following week, most recently with 2013’s Frozen – which played for five days exclusively at the El Capitan theater before a wide release.

The following week, La La Land expanded to 200 theaters, which is a somewhat rare number; most films either will be somewhere around 30 theaters or around 500. It grossed $4,102,091, for a 366% increase, and an 88% decline in per-theater average.

The next three weeks over Christmas and New Year’s, La La Land played in 734, 750 and 1,515 theaters, posting a higher gross each week. The film peaked gross-wise over Martin Luther King weekend by making $14,533,070 in 1,848 theaters. Three weeks later it was up to 3,236 theaters – on par with a major wide release – before beginning to decline.

Overall, La La Land was in the top 15 movies for 15 weekends, a very high but not unprecedented number. By week 16, though, it made $195,343 in 212 theaters, and reported gross for just five more weeks, totaling at just over $150 million.

Miscellaneous

Some other tidbits that may come up in this analysis:

- In recent years, there has been a dramatic shift towards bigger opening weekends and smaller late-run grosses. For a variety of reasons, this trend continues as opening
weekend becomes more important. This is one major reason that comparisons more than ten years old can be misleading.

- Thursday previews are an important factor for movies in their opening weekend. A recent development, many wide releases will hold showings starting Thursday night before its Friday release date. This number is reported as an estimate, but in official reports it is combined into the Friday gross. The extreme example is Star Wars: The Force Awakens, which grossed $57 million in Thursday previews, nearly half of its opening day total. For most movies, the Thursday preview will be between 5% and 10% of its opening weekend gross, a percentage that varies heavily on genre and release date. Thursday previews are not included in this analysis, despite being a strong predictor for the rest of the weekend, because there is no robust data.

- The difference between week two and week three drops can be revealing. Week two drop is somewhat a function of audience and critical approval. But the biggest flops often see their biggest drop on the third weekend, when it is dumped from theaters. The worst-received movies drop around 80% on the second weekend. Whereas in the third weekend, that can be over 90% (or even 100% in some cases) if there is a massive theater drop.

Methods

The goal for this study was to find the most predictive model for estimating the opening weekend box office of 2018 releases, using 2006-2017 wide releases as training data. As discussed in Results, the best model proved to be an adaptation of the CARMELO model. The CARMELO model, developed by FiveThirtyEight originally in 2015, predicts the career arc of every NBA player. For this study, that model was adapted as follows:
The movies in the database were separated into 2018 releases (134) and pre-2018 releases (1,552). Each of the 42 predictive variables were normalized among the pre-2018 releases, including the dummy variables. The means and variances from pre-2018 releases were applied to the 2018 releases for standard variables.

An OLS was run among the normalized variables from pre-2018 to calculate standard Beta coefficients for each predictor.

Then, for each 2018 release, a deviance score was calculated for every pre-2017 release. The deviance was the sum of the squared difference between z-scores for every variable, multiplied by the standard betas.

\[dev_i = \sum \beta (z_\alpha - z_i) \]

The deviance score was turned into a similarity score as:

\[sim_i = 100 \cdot \left(\frac{1.25 - dev_i}{1.25} \right) \]

To predict a 2018 movie, the model considers every pre-2018 release with a positive similarity score. The prediction is an average of the gross of every movie in that sample, weighted by similarity score. This process was repeated for 133 of the 134 releases, and the result was saved as the prediction.\(^1\)

In this idea, which applies to every prediction model, there are three key components that can be changed:

\(^1\) The model was unable to generate a prediction for “Once Upon a Deadpool.” The PG-13 rated re-cut of Deadpool 2, released seven months later in December, grossed $2.7 million in its opening weekend in 1,566 theaters. It finished with $6.1 million. No movie generated a positive similarity score.
a. The calculation for similarity scores.

b. The number of most similar data points used to create a model.

c. The model used to form a prediction using the comparisons.

For instance, an OLS model can be thought of as (a) being irrelevant, (b) being every entry, and (c) being an OLS. For this model, (a) is the standard deviance, adjusted as described earlier, (b) is every movie with a positive similarity score, and (c) is a weighted average, using similarity score as weights.

This model was then tweaked or rewritten, all using STATA, for different types of models:

(2) was a simple OLS regression on log of gross, using the same regressors as CARMELO.

(3) was a random forest model to predict gross using the same regressors as CARMELO.²

(4) was an elastic regression, with lambda 0.0143 and alpha 1, using every regressor and interactions between variables (Appendix C).

(5) was a ridge regression with the same regressors and interactions.

(6) was a lasso regression with the same regressors and interactions.

(7) was the same model as CARMELO but without limiting the weighted average to only positive similarity scores.

(8) was a test of CARMELO where the 1.25 in calculating the similarity score was changed to 1.5.

² Interactions did not significantly change the results in the random forest model and were not used in the final tests.
(9) was a test of CARMELO where the 1.25 in calculating the similarity score was changed to 1.0.

(10) was a test of CARMELO where the standard Betas were all replaced with 1 when calculating the deviance scores.

(11) was a test of CARMELO where the final step of a weighted average was replaced with an OLS to predict log of gross using only metascore and theatercount.

(12) was a test of CARMELO where the final step of a weighted average was replaced with an OLS to predict log of gross using only metascore, theatercount, runtime, sequel dummy, and imdbrating.

(13) was a test of CARMELO where the final step of a weighted average was replaced with an elastic regression using the same regressors and interactions as (4).³

(14) was a test of CARMELO where the criterion of a positive similarity score was replaced with the N=50 observations with the highest similarity score. Every possible N was tested, and N=50 was the most predictive.

(15) was a test of CARMELO where the criterion of a positive similarity score was replaced with the N=1552 observations with the highest similarity score, and the final step of a weighted average was replaced with an OLS to predict log of gross using only metascore, theatercount, runtime, sequel dummy, and imdbrating. Every possible N was tested, and N=1552 was the most predictive.

³ More tests of this type could not be attempted due to the length of the calculation in STATA.
(16) was a test of CARMELO where the deviance score was taken as the absolute value, rather than the square, of the difference between z-scores.

(17) was a test of CARMELO where every positive similarity score was squared before the weighted average.

Each of these models changed at least one of (a), (b) or (c). As discussed in results, none performed as well as CARMELO.

Results

When our version of CARMELO is run, using 2006-2017 films as training data, the R^2 between the predicted and observed for 2018 films is 0.8034. This is higher than the R^2 of any other test.

We also ran tests to find R^2 for four subsets, two at both ends: movies predicted over 50 million, gross over 50 million, predicted under 10 million, gross under 10 million.

Table 1 shows the R^2 for each of the 17 models on the overall data and the four subsets.

The best overall R^2 is for (1), the pure CARMELO. CARMELO also outperforms every other model in most categories. Only (17) is better in both the high and low end. This potentially suggests that when a movie is near the extremes, taking fewer comparisons leads to a better prediction. For risk of overfitting, we did not try to pursue this model further.\(^4\)

\(^4\) If this were true, a model would first need to be used to determine whether a movie was near an extreme, and then based on that a separate model would be used to generate a prediction. This is similar to the parsimonious model used by Sawhney and Eliashberg (1996). Further tests of this type should be considered in a future study.
Table 1: Results of model tests

<table>
<thead>
<tr>
<th></th>
<th>R^2</th>
<th>p > 50M</th>
<th>G > 50M</th>
<th>p < 10M</th>
<th>G < 10M</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0.8034</td>
<td>0.6797</td>
<td>0.6138</td>
<td>0.0384</td>
<td>0.3914</td>
</tr>
<tr>
<td>(2)</td>
<td>0.7807</td>
<td>0.5025</td>
<td>0.5320</td>
<td>0.2531</td>
<td>0.4334</td>
</tr>
<tr>
<td>(3)</td>
<td>0.7093</td>
<td>0.4127</td>
<td>0.4078</td>
<td>0.1296</td>
<td>0.0549</td>
</tr>
<tr>
<td>(4)</td>
<td>0.7649</td>
<td>0.4546</td>
<td>0.5199</td>
<td>0.2085</td>
<td>0.4064</td>
</tr>
<tr>
<td>(5)</td>
<td>0.6725</td>
<td>0.3337</td>
<td>0.4439</td>
<td>0.1896</td>
<td>0.3341</td>
</tr>
<tr>
<td>(6)</td>
<td>0.7478</td>
<td>0.4152</td>
<td>0.4867</td>
<td>0.2528</td>
<td>0.3993</td>
</tr>
<tr>
<td>(7)</td>
<td>0.0125</td>
<td>0.0055</td>
<td>0.1840</td>
<td>0.2586</td>
<td>0.0223</td>
</tr>
<tr>
<td>(8)</td>
<td>0.7715</td>
<td>0.3986</td>
<td>0.5499</td>
<td>0.0169</td>
<td>0.3335</td>
</tr>
<tr>
<td>(9)</td>
<td>0.7784</td>
<td>0.6070</td>
<td>0.6230</td>
<td>0.1198</td>
<td>0.4960</td>
</tr>
<tr>
<td>(10)</td>
<td>0.6790</td>
<td>0.6139</td>
<td>0.4463</td>
<td>0.5601</td>
<td>0.0808</td>
</tr>
<tr>
<td>(11)</td>
<td>0.6035</td>
<td>0.1160</td>
<td>0.3551</td>
<td>0.1056</td>
<td>0.3237</td>
</tr>
<tr>
<td>(12)</td>
<td>0.6539</td>
<td>0.3152</td>
<td>0.3541</td>
<td>0.0930</td>
<td>0.3167</td>
</tr>
<tr>
<td>(13)</td>
<td>0.7569</td>
<td>0.4502</td>
<td>0.4790</td>
<td>0.1357</td>
<td>0.4432</td>
</tr>
<tr>
<td>(14)</td>
<td>0.7923</td>
<td>0.5979</td>
<td>0.6286</td>
<td>0.0841</td>
<td>0.5001</td>
</tr>
<tr>
<td>(15)</td>
<td>0.6684</td>
<td>0.4493</td>
<td>0.3589</td>
<td>0.0789</td>
<td>0.3385</td>
</tr>
<tr>
<td>(16)</td>
<td>0.7752</td>
<td>0.5705</td>
<td>0.5394</td>
<td>0.0250</td>
<td>0.3506</td>
</tr>
<tr>
<td>(17)</td>
<td>0.7940</td>
<td>0.6849</td>
<td>0.6234</td>
<td>0.0567</td>
<td>0.4416</td>
</tr>
</tbody>
</table>
Figure 7: Opening weekend gross of 2018 releases and CARMELO model prediction.
Discussion

Based on these tests, the best model for predicting domestic opening weekend box office is a basketball model. This is certainly a surprising result that warrants further discussion. The adaptation from CARMELO for basketball to movies is in some ways intuitive, and in others it is a stretch.

Perhaps the most important difference is the output. For basketball, the prediction can generate several possible statistics, and the model generates two outputs: offensive and defensive wins above replacement. The box office model only has one output: gross, a much simpler calculation, and easier measurement, than the arbitrary wins above replacement. This suggests our model could be more accurate than FiveThirtyEight’s. Our measurement for success is much easier to measure than in basketball. A model could be adapted to predict Friday, Saturday and Sunday for potentially better accuracy.

The other important difference involves the inputs. For basketball players, prior statistics can be used to predict future ones. Even for rookies, the CARMELO model uses college statistics and is able to adjust to the NBA. In our opening weekend box office prediction, there is no prior gross from which to predict. In this sense, our prediction should be less accurate.

There are a few differences in calculations between the model in this study and the one used by FiveThirtyEight. First, CARMELO for basketball outputs a range, where we only make a single prediction. FiveThirtyEight has an extra step for a baseline projection. Sometimes a player is significantly above or below what would be expected and has been for years. This would often be a superstar player where the comparisons are too low. Each comparison player gets a baseline projection given a simple model of their age, playing time, and recent performance. If the
comparison players consistently exceed the baseline, that exceedance is applied to the forecast. This step was not used in the box office model.

The other difference involves the use of standardized Betas when calculating the deviance score. CARMELO replaces these with a selection of integers as weights for each category. When discussing the model, Nate Silver wrote, “To be honest, they’re a little arbitrary and … intended to make ‘good basketball sense’ rather than being optimized to the nth degree in a way that might produce an overfit model.”

Finally, basketball CARMELO does not exclusively limit the forecast to the use of positive similarity scores. If there are not enough positive comparisons to make a forecast, “the system is designed to relax its standards and give players with mildly negative similarity scores some weight in calculating a player’s forecast,” Silver wrote. Our model only uses positive scores, which only presents a problem for Once Upon a Deadpool.

A future model may attempt to more closely emulate the FiveThirtyEight methods.

We must consider why this model outperforms every other test. An early finding was that the characteristics for a movie at the low end of the box office, and one at the high end, are so different that they offer no predictive value for each other. Sawhney and Eliashberg (1996) found a similar problem but offered a different solution to use a different type of model for each movie. Here, the difference is not the movie itself but the gross of the movie. Rather than find a different complex model, we use the simple weighted average, but limit to only average the most similar comparisons.

What this model offers is an intuitive way of making a prediction using comparison. The process experts use when forecasting is similar in many ways. They are likely to find similar
comparisons to the movie, perhaps by using an arbitrary process, and make a forecast based off the comparisons.

More can be learned about the model by analyzing the places where it is missed.

The Avengers Problem

Because of the structure of the model, it will never predict a new all-time record. It is mathematically impossible. The model can only consider grosses from the past, so it is constrained to the prior range, which has an upper bound. That’s why this model missed low on Avengers: Infinity War, predicting $147 million against its ultimate $257.7 million opening weekend – an opening weekend record. This, in itself, is only a problem every couple of years or so (the opening weekend record had been broken 11 times since 2000 when this study was published, most recently by Avengers: Endgame in April 2019.)

But there is a larger problem that Avengers: Infinity War reveals. The model is not good at recognizing a movie that outperforms every comparable. Deadpool presents a great example of this. A “first-of-its-kind” R-rated superhero action comedy X-Men spinoff from Fox, Deadpool stunned the industry with its $132 million opening weekend. It had the smallest theater count for any $90 million opener, even below movies from 2001 when theater counts were much smaller – its opening was such a surprise to many.

Just three days before release, Deadline predicted a weekend of $60-65 million over four days – missing low by $90 million. That 4-day total would translate to around $50 million for the weekend.

Our model, though, would have missed by more. Rather than isolating the 2015 release, we can analyze what would happen if a Deadpool clone would be released on May 1, 2019 – giving it a
generous release date for a superhero movie. Even still, the comparisons it generates are mostly useless.

<table>
<thead>
<tr>
<th>title</th>
<th>similarity</th>
<th>gross</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadpool</td>
<td>87.2</td>
<td>$132,434,639</td>
</tr>
<tr>
<td>Kingsman: The Secret Service</td>
<td>68.6</td>
<td>$36,206,331</td>
</tr>
<tr>
<td>Game Night</td>
<td>53.3</td>
<td>$17,005,332</td>
</tr>
<tr>
<td>Focus (2015)</td>
<td>43.0</td>
<td>$18,685,137</td>
</tr>
<tr>
<td>How to Be Single</td>
<td>42.0</td>
<td>$17,878,911</td>
</tr>
<tr>
<td>Mile 22</td>
<td>37.0</td>
<td>$13,710,825</td>
</tr>
<tr>
<td>John Wick: Chapter Two</td>
<td>36.4</td>
<td>$30,436,123</td>
</tr>
<tr>
<td>A Good Day to Die Hard</td>
<td>36.3</td>
<td>$24,834,845</td>
</tr>
<tr>
<td>Ferdinand</td>
<td>34.1</td>
<td>$13,401,586</td>
</tr>
<tr>
<td>This Means War</td>
<td>32.8</td>
<td>$17,405,930</td>
</tr>
</tbody>
</table>

Table 2: Comparisons for a hypothetical May 2019 Deadpool release

None of these are accurate representations of Deadpool. The model struggles to identify what makes this R-rated action movie with a medium theater count special. Even with Deadpool’s $135 million as the top comparison, our prediction is $25,796,897. The industry predictions for Deadpool were also very inaccurate, though not to the same extent.

Occasionally, it is clear to the human eye, as in the case of Avengers: Infinity War or Deadpool, that the movie will outperform all the comparisons. Basketball CARMELO adjusts for this type of problem using the baseline forecast. However, because we have no prior statistics to use as a baseline, the problem cannot be solved through this model. Even if we were able to create this baseline prediction, it may not be effective. Avengers: Infinity War opened in fewer theaters than
Despicable Me 3 ($72 million opening weekend in 2017), and while its 156-minute runtime is longer than most blockbusters, that does not necessarily mean a higher prediction.

The Black Panther Problem

The biggest miss of 2018 by total dollars is for Black Panther. The Marvel superhero smash hit has a projection by this model of $77.5 million. Instead, it grossed $202,003,951 opening weekend.

A look at the comparisons reveals where this miss possibly comes from.

<table>
<thead>
<tr>
<th>title</th>
<th>similarity</th>
<th>gross</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guardians of the Galaxy</td>
<td>50.8</td>
<td>$94,320,883</td>
</tr>
<tr>
<td>Rogue One: A Star Wars Story</td>
<td>39.8</td>
<td>$155,081,681</td>
</tr>
<tr>
<td>Doctor Strange</td>
<td>37.6</td>
<td>$85,058,311</td>
</tr>
<tr>
<td>Marvel's The Avengers</td>
<td>34.5</td>
<td>$207,438,708</td>
</tr>
<tr>
<td>The Jungle Book (2016)</td>
<td>33.6</td>
<td>$103,261,464</td>
</tr>
<tr>
<td>Ant-Man</td>
<td>31.7</td>
<td>$57,225,526</td>
</tr>
<tr>
<td>Captain America: The Winter Soldier</td>
<td>29.5</td>
<td>$95,023,721</td>
</tr>
<tr>
<td>Thor: Ragnarok</td>
<td>22.3</td>
<td>$122,744,989</td>
</tr>
</tbody>
</table>

Table 3: Comparisons for Black Panther (2018)

This is a very good list of comparisons. Most analysts would probably come up with a similar one. This list includes, for the most part, large Disney (mostly Marvel) releases that weren’t a sequel to a previous movie but were part of the larger franchise. And given that description, the prediction is not too far off. Most movies in this category would gross around that number.

But then there’s the variance. Over time, some movies with this prediction will fall below what’s expected, such as Ant-Man. And perhaps one will so perfectly capture a cultural zeitgeist in a
way that explodes it from $100 million opening weekend to double that. Without any tracking
data, the model can’t predict which will be which.

Black Panther was unique in its success. When it opened, it was $68 million higher than any
superhero original story opening weekend before it. As of May 2019, Captain Marvel ranks
second at $153 million, still nearly $50 million behind. The Metascore of 88, one of the highest
in the dataset, gives a clue of its success (the movie was later nominated for Best Picture at the
Oscars) but because of the Avengers Problem the model cannot directly use that to adjust higher.

Our model is not unique, however, in underestimating Black Panther. The Long Range Forecast
by Box Office Pro, published eight weeks before release, usually before tracking data is
available, predicted $90 million for the movie. Even the week of its release, when they had
knowledge that it had the best-ever presales for any superhero movie, and adjusting upwards
later in the week, the site still underpredicted, forecasting a $205 million 4-day opening weekend
compared to its $242 million actual.

What results, ultimately, is a problem of variance. Ticket sales or social tracking data could give
us a hint at which will be the biggest successes, but this model does not have that data. This
model can’t predict which will hit the top end of the variance range much more than it can
predict which in a series of 50 dice rolls will hit snake eyes.

Box Office Pro

What has not yet been discussed is how this model compares to the experts. As it turns out, it is
poor given the constraints.

The comparison was made using weekend forecasts from Boxoffice Pro. The website publishes
weekend predictions every Wednesday. Predictions were available for 127 of the 134 movies
with a few adjustments. Some weekends were predicted for 4 days and were adjusted by taking 80% to use as their 3-day forecast. For movies where a range was given as the forecast, the middle of the range was used. “Low single digits” was taken to mean $3 million.

As a whole, Box Office Pro performs significantly better than our model. The R^2 of their predictions to the actual gross is 0.9685. The average miss is much better, and it makes a more accurate prediction for 101 of 127 movies.

There are two potential reasons for their success: better data and better use of the data. While this model contains many regressors, there are important factors that it cannot consider. Most important are ticket presales and social media tracking. These are the most important variables in making a prediction. Ticket sales, especially, represent actual dollars spent. Comparing ticket sales to similar movies is a great way to make an accurate forecast.

Because they have better data, perhaps this is an unfair comparison. The model would be able to make use of presale data if it had enough of an archive, using these numbers either as another point in the similarity score or as a baseline adjustment. Using differences in presale numbers to adjust the gross of comparable movies simulates a forecasting process.

However, perhaps the box office industry is better for a human expert to forecast. These predictions need a human fingerprint to get the best accuracy, especially in determining what makes a comparison better than another one. Consider the 2019 film Breakthrough, about a boy who nearly dies after an ice accident but recovers through prayer. These are the top ten comparisons the model generates:
Eight of the ten are most similar Christianity-themed movies that the model finds even though religion is not part of the model. Chasing Mavericks, while not explicitly religious, fits the criteria well. The tenth, Super Troopers 2, an R-rated vulgar comedy about a group of prankster Vermont police offers, sticks out like a sore thumb.

Conclusion

This model is intended to be the start, rather than the ending, of box office analysis. The model can potentially be tweaked for better accuracy. If adapted by a studio or industry analyst, they can add presale data for better accuracy. Moreover, this idea can be applied to other areas of box office predictions with a few adjustments, and hopefully will be in future analysis.

Predicting the gross of movies after their opening weekend is just as important. A model may be able to be much more accurate than it is for opening weekends and may even rival expert

<table>
<thead>
<tr>
<th>title</th>
<th>similar</th>
<th>gross</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Miracle Season</td>
<td>58.7</td>
<td>$3,950,652</td>
</tr>
<tr>
<td>Heaven is for Real</td>
<td>51.3</td>
<td>$22,522,221</td>
</tr>
<tr>
<td>The Case for Christ</td>
<td>48.7</td>
<td>$3,967,885</td>
</tr>
<tr>
<td>Super Troopers 2</td>
<td>44.2</td>
<td>$15,181,624</td>
</tr>
<tr>
<td>Chasing Mavericks</td>
<td>44.1</td>
<td>$2,268,274</td>
</tr>
<tr>
<td>Soul Surfer</td>
<td>43.8</td>
<td>$10,601,862</td>
</tr>
<tr>
<td>The Promise (2017)</td>
<td>42.4</td>
<td>$4,095,718</td>
</tr>
<tr>
<td>The Identical</td>
<td>42.0</td>
<td>$1,587,137</td>
</tr>
<tr>
<td>God Bless the Broken Road</td>
<td>41.5</td>
<td>$1,386,254</td>
</tr>
<tr>
<td>Woodlawn</td>
<td>41.2</td>
<td>$4,002,226</td>
</tr>
</tbody>
</table>

Table 4: Comparisons for Breakthrough (2019)
predictions in accuracy. For this model, opening weekend can be used as one variable, and the previous weeks as another. Perhaps it is best to only compare the same week during their run, but comparing across weeks should also be tested. Special attention for this model must be paid to holiday weekends. Holidays were ignored to the model’s detriment in the opening weekend analysis. But they become a much more important factor in determining the relationship between opening weekends and a future weekend. There are four official 4-day weekends in studio reporting: MLK, President’s Day, Memorial Day and Labor Day. For each of these, most movies see a much smaller decline than expected, and some even show an increase. Other days, such as Valentine’s Day or Halloween, will also have a big impact. The model could potentially work by outputting the predicted gross for the weekend, or by predicting the percent decline from the week before. Both should be tested, as well as other ideas as fit.

Another important adaptation for this model would be for limited releases. Similar to the post-opening weekend model, this model would need to run week-by-week. Theater counts would be a much bigger factor. A big problem in making these predictions is often finding comparisons with similar expansion patterns. Simply having a searchable database can be hugely valuable. This can also test questions such as the difference caused by expanding earlier or later in the movie’s run.

The model may not, at this point, make better predictions than experts publish, but that does not mean there is no value. With five or fewer tests each weekend, though, this is expected. A human forecaster can easily spend more time making their predictions than the model. In a universe where hundreds of movies (or a different industry where hundreds of products) were released each day, the model should be more accurate than a human.
Where the model would be immediately useful is in the first step, finding comparisons. Finding comparable movies by hand is hard – as of now, there’s no specific process or list. This model formalizes that process.

Furthermore, the model can provide a useful starting point for industries planning a future release. While far from perfect, the model can find similar movies and compare their success. The studio can attempt to model the release pattern after the more successful entries before it has any presales.

There are numerous applications and potential future adjustments to this model. With all of the data available, the analysis in both the industry and in academics can quickly capitalize.

References

Information courtesy of Box Office Mojo. Used with permission.

http://www.boxofficemojo.com/

Appendices

Appendix A: Variables

These variables were pulled from BoxOfficeMojo:

- Title, as defined by BoxOfficeMojo
- Gross – domestic opening weekend gross, in dollars
- Year – Year of release in the United States
- Startdateid – date of release in the United States, with 1 as January 6, 2006 – and one added for each subsequent day
- Theaternumber – number of theaters the film played in during opening weekend
- Runtime – the length, in minutes, of the movie
- Genre – defined as nine dummy variables: action, animation, comedy, documentary, drama, family, horror, scifi, thriller (these categories are not fully disparate; some movies are marked for multiple genres)
- Dayofweek – the day of the week of the release date, where 1 is Sunday, 2 is Monday, etc.
- Month – the month of the release date, defined as 11 dummy variables: jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov (with dec eliminated to avoid collinearity)
- Studio – the movie studio, or parent group, who held the distribution rights in the United States to the film, defined as seven dummy variables: disney, fox, paramount, sony, wb, uni, lionsgate (an eighth category, “other” combines 50 other studios and distributors, and was eliminated to avoid collinearity)
- MPAA – the rating given to a movie’s United States release by the Motion Picture Association of America, defined as three dummy variables: pg, pg13, r (with g eliminated to avoid collinearity; every movie in the data set fell into one of these four categories)

These variables were pulled from OMDB API:
• Metascore – an aggregate of critical reviews on a scale of 1 to 100, pulled at the beginning of 2019 for every movie
• Imdbrating – user reviews, a measure of the general audience reception on a scale of 1 to 10, pulled at the beginning of 2019 for every movie

These variables were inputted by hand, using data from Box Office Mojo:

• Rerelease – a dummy variable for whether the film was a re-release of an earlier movie
• Rereleaseopen – if the film is a re-release, the opening weekend gross, in dollars, for the original release
• Rereleasegross – if the film is a re-release, the total gross, in dollars, for the original release
• Sequel – a dummy variable for whether the film is a sequel to another movie (reboots, spin-offs or movies part of a franchise do not count unless they are sequels)
• Sequelopen – if the film is a sequel, the opening weekend gross, in dollars, for its predecessor
• Sequelgross – if the film is a sequel, the total gross, in dollars, for its predecessor
Appendix B: Data Eliminated

The variable “imdbvotes” was eliminated early in the analysis, because it was determined to not be available before a movie’s release and so not suitable for prediction.

Six movies were eliminated because they did not have a Metascore: The Number 23, Inkheart, Whiteout, The Pirates! Band of Misfits, Texas Chainsaw 3D.

The Protector was eliminated because it was the only movie in the dataset marked as “foreign” (it is much more common for a foreign movie to have a smaller-scale release.)

Two movies were eliminated because they were marked as sequels but did not have a predecessor that could feasibly be used for analysis: Mary Poppins Returns, a sequel to Mary Poppins, a 1964 movie that did not report gross for opening weekend and had a total gross that did not reflect an accurate value of its popularity, and High School Musical 3, a sequel to High School Musical and High School Musical 2, both TV movies that were never released in theaters and so had no reported gross.
Appendix C: Interactions Tested

Interactions were tested between the following variables for the LASSO models. These interactions could not be used for other models because there are too few degrees of freedom.

- theatercount and studio
- theatercount and metascore
- theatercount and imdbrating
- imdbrating and metascore
- imdbrating and studio
- imdbrating and some genres (comedy, drama)
- imdbrating, mpaa and some genres (comedy, horror)
- imdbrating and sequelopen
- imdbrating and sequelgross
- imdbrating and runtime
- metascore and some genres (comedy, drama)
- metascore and studio
- metascore, mpaa and some genres (comedy, horror)
- metascore and sequelopen
- metascore and sequelgross
- metascore and runtime
- sequel and some genres (comedy, action)
- sequelopen and some genres (comedy, action)
- sequelgross and some genres (comedy, action)
- month and all genres
- month, studio and some genres (action, comedy, horror, animation)
Appendix D: .Do File

This .Do file was used in STATA to generate the CARMELO model predictions for 2018 films.

1. cls
2. clear all
3. import excel "C:\Users\ajl936\Desktop\finaldata.xlsx", sheet("data") firstrow clear
drop year
5. format %11.0g gross
6. compress
7. quietly gen CARMELO=.
8. format %11.0g CARMELO
9. drop if foreign==1
drop if metascore==0
drop if sequel==1 & sequelopen==0
gen lgross = log(gross)
sort yr movieid
gen int id=_n
foreach var of varlist startdateid theatercount metascore imdbrating runtime rerelease rereleaseopen sequel sequelopen sequelgross action animation comedy documentary drama family horror scifi thriller dayofweek jan feb mar apr may jun jul aug sep oct nov disney fox paramount sony wb uni lionsgate pg pg13 r {
15. quietly sum `var' if yr==1
16. quietly gen `var'std = (`var'-r(mean))/r(sd)
18. }
19. forvalues x = 1(1)134 {
20. quietly gen dev`x' = sqrt(0.0324886059241402*(startdateidstd-startdateidstd[`x'])^2 + 0.254976382950985*(theatercountstd-theatercountstd[`x'])^2 + 0.066296017527453*(metascorestd-metascorestd[`x'])^2 + 0.0026352555064133*(imdbratingstd-imdbratingstd[`x'])^2 + 0.0261894576514487*(runtimestd-runtimestd[`x'])^2 + 0.0185465316737169*(rereleasestd-rereleasestd[`x'])^2 + 0.0149037328394792*(rereleaseopenstd-rereleaseopenstd[`x'])^2 + 0.0277230445009841*(rereleasegrossstd-rereleasegrossstd[`x'])^2 + 0.00638011707712184*(sequelstd-sequelstd[`x'])^2 + 0.00984887285009068*(sequelopenstd-sequelopenstd[`x'])^2 + 0.0264052536503647*(sequelgrossstd-sequelgrossstd[`x'])^2 + 0.0111923606041752*(actionstd-actionstd[`x'])^2 + 0.0127555224512106*(animationstd-animationstd[`x'])^2 + 0.0137164561628768*(comedystd-comedystd[`x'])^2 + 0.00571873894675243*(documentarystd-documentarystd[`x'])^2 + 0.01222338887211 *(dramastd-dramastd[`x'])^2 + 0.0147704641313814*(familystd-familystd[`x'])^2 + 0.00811434998812832*(horrorstd-horrorstd[`x'])^2 + 0.0150869818435973*(thrillerstd-thrillerstd[`x'])^2 + 0.012685064368931*(scifistd-scifistd[`x'])^2 + 0.00967282637600014*(dayofweekstd-dayofweekstd[`x'])^2}
+ 0.0258255692018154*(janstd-janstd[`x'])^2
+ 0.0213162156920515*(febstd-febstd[`x'])^2
+ 0.0247253140558474*(marstd-marstd[`x'])^2
+ 0.00773625394165672*(aprstd-aprstd[`x'])^2
+ 0.0106547190442289*(maystd-maystd[`x'])^2
+ 0.01714558873374539*(junstd-junstd[`x'])^2
+ 0.00067330236343011*(augstd-augstd[`x'])^2
+ 0.00883843001270746*(septstd-septstd[`x'])^2
+ 0.0094173895838671*(octstd-octstd[`x'])^2
+ 0.0155166891602161*(novstd-novstd[`x'])^2
+ 0.0368136956014404*(disneystd-disneystd[`x'])^2
+ 0.0122325596584059*(foxstd-foxstd[`x'])^2
+ 0.0162222848113577*(paramountstd-paramountstd[`x'])^2
+ 0.0377898879821599*(sonystd-sonystd[`x'])^2
+ 0.0159469401348772*(wbstd-wbstd[`x'])^2
+ 0.03734194999919*(unistd-unistd[`x'])^2
+ 0.0268825129237484*(lionsgatestd-lionsgatestd[`x'])^2
+ 0.00340600727929124*(pgstd-pgstd[`x'])^2
+ 0.0390247891032661*(pg13std-pg13std[`x'])^2
+ 0.0180013876327871*(unistd-unistd[`x'])^2
21. }
22. forvalues x = 1(1)134 {
23. quietly gen sim`x' = yr* max(0, 100*(1.25-dev`x')/1.25))
24. quietly gen pred`x' = sim`x'*gross
25. quietly egen c1 = total(pred`x')
26. quietly egen c2 = total(sim`x')
27. quietly replace CARMELO = c1/c2 if id==`x'
28. quietly drop c1
29. quietly drop c2
30. quietly drop pred`x'
31. }
Appendix E: CARMELO Example from FiveThirtyEight

LeBron James
Los Angeles Lakers
Power Forward
34 Years Old

Weighted Average of Past Three Seasons

Vitals
Height: 6'8"
Weight: 250
Draft position: 1

Scoring
True shooting %: 62%
Free throw %: 71%
Usage %: 31%

Tendencies
3 pt frequency: 25%
FT frequency: 35%

Passing/ball handling
Assist %: 43%
Turnover %: 18%

Defense/rebounding
Rebound %: 13%
Block %: 1.7%
Steal %: 1.8%
Defensive +/-: -0.9

The fine print

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>$85.4m</td>
<td>$105.6m</td>
<td>$95.9m</td>
<td>$86.6m</td>
<td>$74.4m</td>
<td>$70.0m</td>
<td>$49.4m</td>
<td>$32.1m</td>
<td>$22.8m</td>
<td>$13.6m</td>
</tr>
<tr>
<td>Minutes played</td>
<td>2708</td>
<td>2794</td>
<td>3028</td>
<td>2764</td>
<td>2483</td>
<td>2352</td>
<td>2070</td>
<td>1552</td>
<td>1050</td>
<td>066</td>
</tr>
</tbody>
</table>

Performance of the 10 most comparable players

1. Karl Malone
 Year: 1988
 Similarity: 19

2. Charles Barkley
 Year: 1997
 Similarity: 22

3. Julius Erving
 Year: 1984
 Similarity: 19

4. Gary Payton
 Year: 1993
 Similarity: 15

5. K. Abdul-Jabbar
 Year: 1981
 Similarity: 12

6. Hakeem Olajuwon
 Year: 1997
 Similarity: 12

7. Clyde Drexler
 Year: 1996
 Similarity: 21

8. Larry Bird
 Year: 1991
 Similarity: 11

9. Tim Duncan
 Year: 2010
 Similarity: 9

10. Dwyane Wade
 Year: 2016
 Similarity: 7